TITLE: LABORATORY DETECTION OF CARBAPENEMASE-PRODUCING *Klebsiella pneumoniae* AT THE HOSPITAL UNIVERSITÁRIO ANTÔNIO PEDRO, NITERÓI.

AUTHORS: TERRA, P.A.C.¹; MENDONÇA-SOUZA, C.R.V.¹; ALCÂNTARA, K.V.¹; ZAHNER V.²; TEIXEIRA, C.B.T.²; MUNIZ, T.³; SOARES V.T.³; SANTOS, A.L³; REBELLO, N.A.C.C.³; FERREIRA D.G.³; CARVALHO-ASSEF, A.P.D.²; CHAGAS, T.P.G.¹

INSTITUTION: ¹DEPARTAMENTO DE PATOLOGIA, FACULDADE DE MEDICINA. UNIVERSIDADE FEDERAL **FLUMINENSE** (NITERÓI, RJ): ²INSTITUTO OSWALDO CRUZ, FUNDAÇÃO OSWALDO CRUZ (RIO DE PATOLOGIA JANEIRO. RJ): ³SERVICO DE CLÍNICA. HOSPITAL UNIVERSITÁRIO ANTÔNIO PEDRO. UNIVERSIDADE FEDERAL FLUMINENSE (NITERÓI, RJ).

ABSTRACT:

Background: Carbapenem-resistant K. pneumoniae (CRKP) has been emerged as a problematic infectious pathogens worldwide. The mechanisms underlying carbapenem resistance in CRKP include the production of carbapenem-hydrolyzing β-lactamases. An increasingly diverse range of carbapenem-hydrolyzing enzymes are being recognised, including Class A serine-*B*-lactamases (KPC), Class B metallo-*B*-lactamases (NDM) and carbapenem-hydrolysing Class D oxacillinases (OXA-48-like). Here, we performed phenotypic and molecular detection of carbapenemase production among CRKP isolates recovered from Hospital Universitário Antônio Pedro (HUAP). Materials and Methods: We included 14 K. pneumoniae isolates recovered from clinical samples of patients admitted to HUAP (from July/2018 to April/2019). We only considered one isolate per patient. Bacterial identification and antimicrobial susceptibility testing were performed using the BD Phoenix[™]. Modified Hodge test and modified carbapenem inactivation method (mCIM) in conjunction with EDTA-modified carbapenem inactivation method (eCIM) were used for phenotypic detection of carbapenemase production. For molecular investigations, bacterial DNA extraction was performed by thermal lysis and a conventional PCR assay was performed to detect carbapenemases genes ($bla_{OXA-48-like}$, bla_{KPC} , and bla_{NDM}). **Results:** According to the results of the antimicrobial susceptibility testing, the majority of antimicrobials tested showed elevated resistance rate. Ciprofloxacin, cefepime, ceftazidime, imipenem, meropenem, ertapenem, ceftriaxone and piperacillin/tazobactam showed the highest resistance rate n = 14). followed by ampicillin-sulbactam and (100%,sulfamethoxazoletrimethoprim (86.6%, n = 13). Amikacin showed the highest susceptibility rate (86,6%, n = 13). Phenotypic analysis allowed us to discriminate between serine- and metallocarbapenemases. The presence of bla_{KPC} gene was confirmed in 13 CRKP isolates (86.6%). Results obtained from mCIM/eCIM indicated, for bla_{NDM}-positive (n=1) CRKP isolate, the zone of inhibition of meropenem was 23mm. None was positive for $bla_{0XA-48-}$ like. **Conclusions:** In the past years, the increase in carbapenem-resistant organisms has become an important medical issue around the world. Here, we observed bla_{KPC} is the main carbapenemase gene in our hospital. Our study indicate mCIM in conjuction with effective method to identify the carbapenemases eCIM is an producers among CRKP clinical isolates.

Keywords: *Klebsiella pneumoniae*, carbapenem resistance, KPC, NDM.